4,409 research outputs found

    Shallow Surveying in Hazardous Waters

    Get PDF
    Of order one importance to any study of nearshore processes is knowledge of the bathymetry in shallow water. This is true for studies on open coast sandy beaches where surf zone dynamics drive the system, inlet environments where bathymetric evolution can rapidly change navigation channels, and in more benign, lower-energy coastal environments that evolve slowly over 10’s to 100’s of years. Difficulties in obtaining shallow bathymetry where depth-limited wave breaking occurs, submerged hazards are present, or other harsh environments has led to the development of survey systems on highly maneuverable personal watercraft (Beach, et al., 1994; Cote, 1999; Dugan, et al., 1999; MacMahan, 2001). In this work we discuss shallow water surveying from the Coastal Bathymetry Survey System (CBASS), a Yamaha Waverunner equipped with differential GPS, single-beam 192 KHz acoustic echo-sounder, and onboard navigation system. Data obtained with the CBASS in three regions will be discussed, including an energetic surf zone located in southern California during the 2003 Nearshore Canyon Experiment (NCEX), on Lake Erie in 2002 (and compared with historical surveys dating back 150 years), and around Piscataqua River Inlet, NH, in 2007. Estimated accuracy (for sandy bottoms) in water depths ranging 1–10 m are 0.07-0.10 m in the vertical, and on the order of 0.1-1 m horizontally depending on water depth and bottom slope. The high maneuverability of the personal watercraft makes very shallow water bathymetric surveys possible with acoustic altimeters, particularly in regions where airborne remote sensing systems fail (owing to water clarity issues) or where repeated high resolution surveys are required (e.g., where an erodible bottom is rapidly evolving)

    Conformal Invariance and Shape-Dependent Conductance of Graphene Samples

    Full text link
    For a sample of an arbitrary shape, the dependence of its conductance on the longitudinal and Hall conductivity is identical to that of a rectangle. We use analytic results for a conducting rectangle, combined with the semicircle model for transport coefficients, to study properties of the monolayer and bilayer graphene. A conductance plateau centered at the neutrality point, predicted for square geometry, is in agreement with recent experiments. For rectangular geometry, the conductance exhibits maxima at the densities of compressible quantum Hall states for wide samples, and minima for narrow samples. The positions and relative sizes of these features are different in the monolayer and bilayer cases, indicating that the conductance can be used as a tool for sample diagnostic.Comment: 9 pages, 6 figure

    Anomalous Payload-Based Network Intrusion Detection

    Get PDF
    We present a payload-based anomaly detector, we call PAYL, for intrusion detection. PAYL models the normal application payload of network traffic in a fully automatic, unsupervised and very efficient fashion. We first compute during a training phase a profile byte frequency distribution and their standard deviation of the application payload flowing to a single host and port. We then use Mahalanobis distance during the detection phase to calculate the similarity of new data against the pre-computed profile. The detector compares this measure against a threshold and generates an alert when the distance of the new input exceeds this threshold. We demonstrate the surprising effectiveness of the method on the 1999 DARPA IDS dataset and a live dataset we collected on the Columbia CS department network. In once case nearly 100% accuracy is achieved with 0.1% false positive rate for port 80 traffic
    • …
    corecore